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, , I ABSTRACT 
I 

I Coupled differential equations which describe the simultaneous 

relaxation of different components at greatly different ra tes  present  a 

difficulty in numerical  integration, since the integration interval is 

determined by the fas tes t  ra te ,  d11d the r e g i ~ r ;  ~f iztegratiai is  determined 

by the slowest rate.  

f rom the approximation that within an interval the first derivative can be 

expressed  as * = - py+ Q&). The method is exact i f  the differential 

equation is of the f o r m  shown, where f is constant and Q (s) is a quad- 

ra t ic  in 

has  a para l le l  t o  the Runge-Kutta method. F o r  PA small (where is 

the integration interval)  the method is identical to fourth o r d e r  Runge-Kutta 

and thus is co r rec t  to  o r d e r  h4 . Results for  the coupled chemistry of 

high tempera ture  air a r e  compared with results obtained f rom the usual Runge- 

I 
J 

In the present  paper an integration formula is derived 

d,! 

. The algorithm utilizes only the first derivative and thus 

Kutta procedure.  A d +  (-td 

.. 
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INTRODUCTION 

Of the many methods available fo r  the numerical  solution of ordinary 

differential equations o r  s e t s  of coupled ordinary differential equations, 192 

most  have specific advantages so  that they a r e  chosen fo r  special  types of 

problems. 

popular in a wide variety of cases .  

equations which present  considerable difficulty in their  solution and fo r  

which there  does not s eem to be a simple and accurate  method available. 

These equations can be character ized by the fact  that the derivative of a 

dependent variable has  a strong dependence on the difference between i ts  

own value and that of a slowly varying function. 

pendence they a r e  sometimes r e fe r r ed  to  as  "s t i f f"  equations. 3 y 4  An 

example is the simultaneous relaxation of several  coupled components with 

widely different relaxation t imes,  where the calculation interval  for  the ent i re  

relaxation region is determined by the t ime constant of the most  rapid process  

Several  methods have a generai  applicability tEzt h a s  ?-?de them 

There exists,  however, a c l a s s  of 

Because of this  strong de- 

In problems of high-temperature air flows, the chemical ra te  equations 

somet imes  have this charac te r ,  involving both fast and slow chemical r a t e s  

in some regions of integration. Similar  pi-oblexs appear in the calculation 

of both vibrational relaxation and electronic excitation during the dissociation 

of diatomic molecules.  

can  handle the stiff-equation problem when it a r i s e s ,  but which will provide 

the p rope r  speed and accuracy f o r  those portions of the calculation.where 

no spec ia l  t rea tment  is required.  

It is desirable to  have a method of integration which 

In the present  report  a method of integration is derived fo r  the specific 

In a case where the derivative is strongly purpose of handling this problem. 
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dependent on the value of the dependent variable, the integration formula 

takes this dependence into account directly and does away with the strong 

oscillations generated by usual integration formulas such as Runge-Kutta's. 

However, in the case  where the derivative does not have this strong depend- 

ence,  the metnod te lol i ies  ide;;tic?.l with the  fourth o r d e r  Runge -Kutta scheme,  

which is known to  handle such integrations wi th  good accuracy. 

method can be used for  a group of simultaneous differential equations over 

the ent i re  range of integration when it is  not known a t  what point within the 

range and for  which of the variables the difficulty will occur .  

application of the method to an aerodynamic chemical-kinetic problem is 

given as an  i l lustration of the method. 

Thus the 

A specific 

2 AG- 1 7 2 9 4 - 9 4  
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DERIVATION O F  INTEGRATION FORMULA 

The integration formula used for  the integration of the f i r s t  o rde r  

differential equation 

yw, o r  is determined by the approximate treatment that  is accorded 

f (#, Y) . An especially convenient method is the fourth-order  Runge- 

Kutta , whe re y(&) 
to  fourth o r d e r  in the integration interval,  

vatives a r e  determined indirectly by evaluating 

is expanded in a Taylor 's  s e r i e s ,  retaining t e r m s  

. The higher o rde r  de r i -  

4 (6,  7) a t  th ree  

collocation points in addition to  the initial point. In the usual method, 1 

these points a r e  given by 

% = &,+A y+ = 71 +AT, 
where y-.- = - y (dL] and f z f (dz yL)  . Thus f is evaluated 

i 

at two points midway in the intervai and one ai each ~ i i d  ~f t he  intez-val: The 

change in  7 over the interval is then 

a 
=-g- (c+ 2f,  + Zf, + f* )  F ( 3 )  

This  method of integration, although generally very  satisfactory,  fails  badly 

in the c a s e  where the higher o rde r  derivatives a r e  large.  

if Eq. (1) can  be writ ten approximately as 

3 In par t icular ,  

3 AG-1729-A-$4 



where P is a la rge  number and 9 i s  a function of 9 a dif- 

ficulty a r i s e s  because each derivative is  

preceding one, and so the interval 

that  P A  is not much g rea t e r  than unity. If 

f ract ion of i t s  total range over this interval,  then many s teps  a r e  required 

to complete the integration, 

t 
p times b r g e i -  than t he  

/R, must be res t r ic ted  by a condition 

changes only a small f 

An alternative procedure is to  express  as a power s e r i e s  in 

d and integrate Eq. (4) directly. An algorithm based on this  procedure 

has  been given by Certaine,  where explicit functions f o r  P and 

utilized in the solution. 

general  f o r m  which behaves, in some regions, Pike that descr ibed in ( l ) ,  it 

is convenient to have an integration procedure s imi la r  t o  the Runge-Kutta 

method given in Eqs. ( 2 )  and ( 3 ) .  

of f (4, r) a t  specific points in the integration interval.  

cussion presents  a method which sat isf ies  this Coiidition and which, fo r  pkt 

small, is identical with the Runge-Kutta method. 

f a r e  

If however, the equation to  be integrated has  a very 

1 

I 

This method requires  only the evaluation 

The present  d i s -  

If it is assumed that Eq. (1) can be approximated by 

over  the interval  f rom 6, y,  to $ I  + A 7, + A y  thenEq .  

(5)  can be integrated and the value of Ay can be writ ten 

4 



The functions 

-PA 
F = e  j 
0 

= k ( A F ,  + B A F ,  + CA2F, ) ( 6 )  

are simple exponential functions of PA F, 

(7)  

The four constants A,  B, C and P can be evaluated by determining the 

value of f ( 4 , ~ )  at four points dL 7 yL in the interval and solving 

f o r  the constants f r o m  evaluation of Eq. (5) a t  the four points. The 

points that a r e  chosen a r e  4, y, at the beginning of the interval 

(a point on the t rue  curve) ,  two points at the half interval d 2  = d 3 =  

and one point at the end of the interval,  

R 
4, +y 

$+ = $, + a . The values of 

yi at the points need not be specified as yet. There then resu l t s  . 
A =  f, 

where $,. = f (4; 2;) . Equations ( 6 ) ,  (7) and (8) then constitute the 

. integration formula 
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It is seen that in the limit of p-0 (no dependence of fl($) y)  on 

Eq. (9)  becomes equal to the Runge-Kutta formula,  Eq. (3 ) ,  as Y) 
would be required.  If terms of o rde r  ,&(PA) a r e  retained in (9) the 

resul t  is still identical with (3) providing that the values of 

and $4+ are Lhcseii azcerdizlg tn Eqs- ! 2 ! *  In general ,  with the definitions 

f o r  y 2  Y 7 3  and y4 given in Eq. ( 2 ) ,  Eq. (9) can be rewrit ten as 

Y2 , Y3 

is defined in Eq. (3). The additional t e r m  is fifth o rde r  

and higher in R/ . 
Thus when Eq. (9) is used with Eqs.  (2) to  integrate ovex an interval 

where /?%, is small, the resul t  will be identical with Runge-Kutta. If 

PA i s  la rge ,  a condition where the Runge-Kutta method is known to be 

unstable, Eq. (9) supplies a far superior  solution. 

When p a  
as given in Eq. ( 2 )  is considerably different f rom the co r rec t  

is la rge  it is generally t rue that the Runge-Kutta equation 

7 4  
fo r  

value on the curve,  and thus does not provide the best  evaluation of the con- 

s tants  B and C. 

evaluated before point 4 is calculated. 

Since P is determined f ro i i i  points 2 and 3 ,  can be 
' 7  

It i s  then possible to  get a much be t te r  

approximation fo r  Y g  
omitted, s o  that 

by integrating Eq. (5)  with the quadratic t e r m  

7 4  = 7, 

The use of this  

f o r  by f r o m  

equation in place of the las t  of Eqs.  (2)  disturbs the resul t  

the Runge-Kutta answer only to  fifth o r d e r  in and is very 

6 AG- 1729-A-#4 



helpful when PA is large.  

In the l imit  of PA very large,  Eq. (9) becomes 

-_ 
approa&as t he  =q~ili??riiim value evaluated at -? a 

72 

'i.nus 

31. = #, + A. 
relations chosen between 

This limiting solution is obtained independent of the 

and d L  

7 



EXAMPLE 

The example that has  been chosen to i l lustrate the advantages of the 

present  integration procedure is taken from the coupled chemical-kinetic 

equations for  reactions behind a shock wave in a i r .  The dependent var i -  

ables  are the species concentrations and the enthalpy and veiociiy ul' the 

air. The independent variable,  & , is the distance behind a shock wave 

and thus i s  proportional to  the t ime since the reactions s tar ted.  

example used h e r e  the temperature  immediately behind the shock wave i s  

3070°K and the density is 8. 18 x 10 

species  a r e  considered, and nine chemical reactions.  The temperature  is 

sufficiently low so that ionization can be  neglected. 

reactions and a complete description of the coupled equations can be found 

in Ref. 5 .  

of nitrogen atoms 

In the 

- 3  3 g m s / e m  . Six atomic and molecular 

A discussion of the 

We write he re  the differential  equations fo r  the ra te  of formation 

where the coefficients Di 

pera ture  of the air. 

identified by the various le t te r  subscripts.  

equations f o r  each of these species.  

a r e  functions of the over-al l  density and tem-  

The dependent variables axe the species  concentrations, 

There a r e  similar differential 

The resu l t s  obtained for  the nitrogen atom concentrations, using the 

fourth o r d e r  Runge-Kutta scheme of integration is shown by the points in 

Fig.  1. 

are per formed,  and fai lure  of any of these t e s t s  resul ts  in discarding the 

After  completion of each interval of integration a number of tes t s  

8 AG-1729-A-$4 



last s tep of integration and cutting the integration interval by a factor  of 

two. In addition, a f te r  two successful steps, the integration interval  is 

doubled, in an  attempt to  proceed at the largest  possible integration in- 

t e  rval.  

6 

The Runge-Kutta resul ts  shown in Fig .  i snow thdi & Sharp BZC;'=- 

c m  -4 tooth r i s e  resu l t s  whenever the interval  is doubled f r o m  . 8 x 10 

to  1. 6 x 10 

to  fail the integration tes t s .  

fail the t e s t s  and reduces the interval  again. 

lated points approach the co r rec t  curve.  

interval is doubled, but the result  fails the tes t s ,  and so  does not appear  

in Fig. 1. 

the c o r r e c t  curve,  and when the interval is  doubled the resul t ,  though poor, 

does pas s  the t e s t s  imposed. 

saw-tooth pattern.  

-4 cm.  This resulting calculation is in e r r o r  but not enough 

The next step a t  the l a r g e r  interval  does 

A t  this interval  the calcu- 

After two successful s teps  the 

After two m o r e  s teps  the calculated values a r e  very  close to  

In this manner the integration continues the 

The method presented in the present paper was a l so  applied to this 

problem with the same  rules f o r  testing integration accuracy and obtaining 

inrl interval  s ize .  EqIJations ( 2 )  were  used fo r  y2 ClEd y 3  , -I-- 

. Equation ( 9 )  was then used to  obtain A . Y4 Y Eq. (1 1) was used for  

It should be emphasized that the calculation t ime pe r  integration step is 

essent ia l ly  the same  as f o r  the Runge-Kutta method, since most  of the 

computation t ime is spent in evaluating the derivatives,  so  that the extra  

t ime spent in  evaluatirg Eq. ( 9 )  instead of (3)  is negligible. The resul ts  

are shown by the 4 ' ~  in Fig. 1. It is seen that the interval  increases  

to  2. 56 x 10 - 3  cm,  Some twenty-five t imes l a rge r  than the Runge-Kutta 

9 AG- 1729-A-84 



step. The value of P' for  these steps is N 75. A s  shown in 

Ref. 3,  the fourth order  Runge-Kutta equations are not stable fo r  this 

form of equation for  PA > 5.6. This is  consistent with the present  

numerical  resul ts ,  where a Runge-Kutta step of 1/25 of that  of the p re -  

sent method ( p a N  3) 6) is 

not. 

is stable, but twice that step s ize  (PA 

The nitrogen atom concentration is shown for  comparison in  Fig. 

1 because it is this species which provides the numerical  difficulty in 

the present  problem. 

curves throughout the course of integration. 

A l l  the other species concentrations follow smooth 

10 AG- 1729-A-#4 
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